Problem 12 Resonating Glasses

International Physics Tournament 2020 - University of California, Berkeley Abrego, Ceja, Hathaway, Kadam, Mal, Mehrotra

Problem

When you take two glasses between your fingers, they sometimes emit a particular sound containing a frequency sweep. Investigate the phenomenon.

To investigate phenomena 1. Simplify Model
2. Analyze Data
3. Extend Considerations

To investigate phenomena 1. Simplify Model
2. Analyze Data
3. Extend Considerations

Simplify as a problem of pendulums

Rigid body: For visual purposes, we draw the 'ball' at the center of mass.

Further reduce to single pendulum \& wall

Relevant parameters

 for successive collisions.$\rightarrow \quad \boldsymbol{\theta}_{\mathrm{k}} \sim$ max angle before $\mathrm{k}^{\text {th }}$ collision
$\rightarrow \quad \boldsymbol{\omega}_{\mathrm{k}} \sim$ angular velocity immediately after the $(k-1)^{\text {th }}$ collision

What does the system look like for energy?

	Initial Max Angle	Immediately Before Collision	Immediately After Collision	Next Max Angle
Kinetic Energy	0	$\mathrm{KE}_{\mathrm{k}-1}$	$\mathrm{KE}_{\mathrm{k}}=\mathrm{c}^{*} \mathrm{KE}_{\mathrm{k}-1}$	0
Potential Energy	$\mathrm{L}^{*} m g\left(1-\cos \left(\theta_{\mathrm{k}-1}\right)\right)$	0	0	$L^{*} m g\left(1-\cos \left(\theta_{\mathrm{k}-1}\right)\right)$

Using the small angle approximation along with $\mathrm{W}=\triangle \mathrm{KE}$

$$
\theta_{k+1}=\frac{c \cdot K E_{k}}{\tau}
$$

$$
\omega_{k+1}=\sqrt{\frac{2 C}{I} \cdot K E_{k}}
$$

To investigate phenomena 1. Simplify Model
2. Analyze Data
3. Extend Considerations

Analysis: Time in two parts

$t_{k 1}$

Part I

$$
-\tau=I \alpha=I \frac{d \omega}{d t}
$$

for $t=0, \omega=\omega_{k}$

$$
t=\frac{I}{\tau}\left(\omega_{k}-\omega\right)
$$

for $\omega=0, t=t_{k 1}$

$$
t_{k 1}=\frac{I \omega_{k}}{\tau}
$$

Part 2

$$
\tau=I \alpha=I \frac{d \omega}{d t}
$$

$$
\text { For } t=0, \omega=0
$$

$$
t=\frac{I}{\tau} \omega
$$

For $\omega=\omega_{k}, t=t_{k 2}$

$$
t_{k 2}=\frac{I \omega_{k}}{\tau}
$$

Time between successive collisions is:

$$
\begin{aligned}
t_{k}=t_{k 1}+t_{k 2} & =2 \frac{I w_{k}}{\tau} \\
& =\frac{2 I}{\tau} \sqrt{\frac{2 c \cdot K E_{k-1}}{I}} \quad \text { where } \quad K E_{k-1}=\frac{1}{2} I \omega_{k-1}^{2} \\
& =\frac{2 I}{\tau} \sqrt{c w_{k-1}^{2}} \\
& =\sqrt{c} t_{k-1} \\
& =(\sqrt{c})^{k-1} t_{0} \quad \text { since } \quad \frac{t_{k}}{t_{k-1}}=\sqrt{c}
\end{aligned}
$$

Set up and obtaining Spectrograms

Expectations for times between Successive Amplitudes

- We preliminarily observed collision time periods to be geometric progressions, or constant consecutive ratios of terms.
- We obtain the expression for the time period between collisions:

$$
t_{k}=(\sqrt{c})^{k-1} t_{0}
$$

- We have investigated the time period over the amplitude since it is easier to quantify with our available resources.

Nature of Collisions

We model each collision sound pulse at time \boldsymbol{t} as a delta function of the form $\boldsymbol{\delta}$ ($x-x_{t}$)

When decomposed into its fourier components, the delta function produces a large range of frequencies which we see in the figure.

Variation of fraction of Energy loss (e^{2})

- $e=$ coefficient of restitution
- $S_{y}=$ dynamic yield strength (dynamic "elastic limit")
- $E^{\prime}=$ effective elastic modulus
- $\rho=$ density
- $v=$ velocity at impact
- $\mu=$ Poisson's ratio
$e=3.1\left(\frac{S_{\mathrm{y}}}{1}\right)^{\frac{5}{8}}\left(\frac{1}{E^{\prime}}\right)^{\frac{1}{2}}\left(\frac{1}{v}\right)^{\frac{1}{4}}\left(\frac{1}{\rho}\right)^{\frac{1}{8}}$

Notice that decrease in velocity leads to increase in \mathbf{e} which is a decrease in the fraction of energy lost.

This leads to the following conclusion:
Locally, (i.e for small number of consecutive collisions), \boldsymbol{e} is constant and our simplified model works for the time analysis. But over time e changes enough to produce a noticeable change

Display of local character in Data

Time (not to scale)

Display of local character in Data

Further Data with similar character

Original

Calculation of Exact behaviour

By incorporating $e=3.1\left(\frac{S_{\mathrm{y}}}{1}\right)^{\frac{5}{8}}\left(\frac{1}{E^{\prime}}\right)^{\frac{1}{2}}\left(\frac{1}{v}\right)^{\frac{1}{4}}\left(\frac{1}{\rho}\right)^{\frac{1}{8}}$
into our original equations instead of using constant \mathbf{e} we can calculate the exact behaviour of the frequency. This can be easily modelled numerically.

Summary of Assumptions

- Constant torque

Summary of Assumptions

- Constant torque
- Rigid body (no change in shape)

Summary of Assumptions

- Constant torque
- Rigid body (no change in shape)
- Small angle approximation has been made freely in the analysis

To investigate phenomena 1. Simplify Model
2. Analyze Data
3. Extend Considerations

Further aspects of consideration

- Effect of temperature.
- Effect of modulus of material.
- Effect of liquid in glasses.

Thank you.

End trail (Hard to Reproduce)

